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Abstract 

The central thrust of this paper is to accentuate the impact of Anti-Retroviral Therapy (ART) 

on cure rate of HIV/AIDS patients and on the transition intensities between the stages of disease 

using cure rate model and Hidden Markov model (HMM) respectively.  Hidden Markov Model 

(HMM) is a captivating algorithm for temporal pattern recognition like automated speech, 

handwriting and gesture recognition in the signal processing field. Although it is based on 

Markov processes which are more widely used in estimating the transition rates between the 

different stages of a disease, but HMM is hardly being used in survival data modeling.  

Keywords: AIDS, CD4, Cure Rate Model, Hidden Markov Model. 

 

*Corresponding author: Arpan Kumar Thakur  

 

 

 

 

 

 

 

 

Issn No: 0393-9154

PAGE NO:  1

Coenoses Journal

Volume 44 issue 12 2024



 
 
 
  

 

Abstract 

The central thrust of this paper is to accentuate the impact of Anti-Retroviral therapy (ART) 

on cure rate of HIV/AIDS patients and on the transition intensities between the stages of disease 

using cure rate model and Hidden Markov model (HMM) respectively.  Hidden Markov Model 

(HMM) is a captivating algorithm for temporal pattern recognition like automated speech, 

handwriting and gesture recognition in the signal processing field. Although it is based on 

Markov processes which are more widely used in estimating the transition rates between the 

different stages of a disease, but HMM is hardly being used in survival data modeling.  
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___________________________________________________________________________ 

1. Introduction 

Human Immunodeficiency Virus (HIV) is a kind of virus that ushers and leads to Acquired 

Immune Deficiency Syndrome (AIDS). HIV taints a particular type of white blood cells, known 

as T- cells (or CD4+ T-cells), that helps in fighting diseases. As time passes, HIV kills CD4+ 

T- cells and multiplying itself, that leads to weakening of the immune system. In due course of 

time, the infected person’s immune system can no longer fight off diseases. So, proper 

measurement of CD4+ T cell count may be viewed as the snapshot of how good a patient’s 

immune system is functioning. 

Till date, there is no vaccine that can claim of curing HIV/AIDS. Although, a medication called 

antiretroviral (ARV) drug can steady the deteriorating immune system. The initiation of ARV 

drug is generally based on two clinical observations, one is CD4+ T cell count and another is 

viral load (HIV RNA concentrations) that measures HIV in the blood, lower is better. The 

purpose of the ARV drug is to make viral load undetectable and if it is able to do so, then 

Issn No: 0393-9154

PAGE NO:  2

Coenoses Journal

Volume 44 issue 12 2024



 
 
 
  

infected person can’t transmit HIV to partner [Veterans’ Health Administration]. According to 

WHO guidelines also, initiation of ARV drug and for measuring disease progression, viral load 

should be preferred over the CD4+ cell count. 

But, in India due to scanty of resources, the decision about the commencement of treatment 

and disease progression is taken merely based on CD+ cell count. In spite of the fact that, 

national AIDS control organization (NACO) issued new guidelines that mandated to “treat all 

persons living with HIV (PLHIV) with antiretroviral therapy regardless of CD4+ cell count, 

clinical stage, age or population” [NACO on May, 2017], CD4+ cell count play an 

indispensable role in entire treatment protocol. 

To study the transmission of the virus to next-generation Bature et al. (2010) used a Markov 

chain model. The same model has been used for observing disease progression in liver cancer 

Kay et al. (1986), for Hepatitis C disease progression Sweeting et al. (2010), for tuberculosis 

(TB) progression Debanne et al. (2000), Alzheimer’s disease Commenge et al. (2004), liver-

cirrhosis progression Grover et al. (2014). Discretized Markov model has been developed and 

employed to AIDS prediction in England and Wales, Aalen et al. (2018), Grover et al. (2013) 

used Markov model to study disease progression among HIV/AIDS patients. 

New and ameliorated statistical methods are always entailed for making decisions about 

initiation and switching treatment protocols. Nevertheless, antecedent studies have 

appropriately modeled disease progression using multistate Markov processes, very few have 

explored the aptness of the hidden Markov model. 

The aftermath of lung transplantation is studied by Jackson and Sharples (2002), Guihenneuc-

Jouyaux et al. (2000) used a Bayesian hierarchical model for hidden Markov processes by 

exemplifying HIV infected patient’s data. On the contrary to the simple Markov model, where 
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the state is directly observable, in HMM the true state is not directly visible (that’s what name 

hidden symbolizes). The HMM canvasses to recuperate the true sequence of states from the 

visible (observed) sequence of states It has a plethora of applications in speech recognition, in 

part of speech tagging, in object tracking, in computational molecular biology. HMM in one 

sense may be treated as an artefact in the sense that it has developed way back in late 1960’s 

by Baum & Petrie (1966) but it’s use is now ubiquitous in science including survival analysis. 

In India, ART centers are compelled to use CD4+ T cell count instead of the viral load while 

staging the HIV patients. This may lead to a mismatch in staging additionally measurement of 

CD4+ cell count itself is prone to error mainly due to intraindividual variability and to some 

extent due to measurement error. In this paper an attempt has been made to underline the 

mismatch using HMM. 

The paper is organized as follows: in next section 2, a short explanation of material and 

method to be used is given. In section 3, results are provided followed by section 4 where 

discussions, limitations, future ambits and pipelined research is presented.     

 

2. Material and Methods 

2.1 Materials 

It is a longitudinal retrospective follow-up study of HIV/AIDS patients undergoing treatment 

at ART center of Dr. Ram Manohar Lohia hospital in New Delhi, during the period April 2004 

to December 2014. Exclusion criteria were the age at enrollment should be >= 18 years, should 

have baseline CD4+ cell count available, periodic CD4+ cell count available for at least two 

visits. By filtering using complete case analysis on variables like sex, smoking and alcohol 

consumption status, treatment (virocomb-N combination and others), we are left with only 

1063 observations. 
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2.2 Methods 

2.2.1 Cure Fraction Model 

Assume that � be the probability of an HIV patient being a long-term survivor and (1 −  �) 

be the probability of a patient being susceptible to death (Stage 5 of the disease). Then, Berkson 

et al. (1952) defined the survival function at any time t as: 

( ) (1 )* ( )uS t C C S t                                    (1) 

                                              

where, ��(�) is the survival function of the susceptible population which may be assumed to 

follow some life time distribution. Probability density function �(�) of the overall population 

is written as 

                                                        �(�)  =   (1 −  �)  ∗  ��(�)                             (2) 

where ��(�) is the probability density function of susceptible population. 

Now let ( ti, δi ) be the observed data of size n , where ti is the survival time of the ith patient 

and   δi  is censoring indicator variable which is defined as follows:     δi  = 0  for right-censored 

observation and  δi  = 1 for uncensored observation (i = 1, 2, . . , n). 

Accordingly, the individual patient’s contribution to the likelihood function can be written as 

                    ��    = [�(��)]��  [�(��)](���� ) 

                            = [(1 − �)��(��)]��  [� +  (1 − �)��(��)](���� )                            (3) 

So, complete likelihood is given by 
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       (1 )

1 1

[(1 ) ( )] [ (1 ) ( )]i i

n n

i u i u i
i i

L L C f t C C S t 

 

                                 (4) 

Parameters are estimated by maximizing the complete data likelihood in equation (4) using 

WinBUGS software package using Gibbs sampling approach. Here we have used various 

lifetime distributions like exponential, Weibull, gamma, exponentiated Weibull etc., based on 

least deviance information criteria (DIC) value we found exponentiated Weibull distribution to 

the best model. For detailed review of the foregoing model one may refers to Farewell (1982),  

Yamaguchi (1992), Maller and Zhou (1995), Chen et al. (1999), Peng and Dear (2000), and Sy 

and Taylor (2000), Kannan et al. (2010), Achcar et al. (2012),  Swain et al. (2016). 

2.2.2 Hidden Markov Model 

Before applying HMM, we have used a time-homogenous multistate Markov model to study 

disease progression among HIV/AIDS patients. For this purpose, stages of HIV/AIDS patients 

have been defined in terms of CD4+ cell count as: 

Stage/State 1 2 3 4 5 

CD4+ cell 

count range 

>500 351-500 200-350 <200 Death 

 

It is well established that ARV drugs improve the CD4+ cell count in most of the cases, but 

unfortunately for some patients, it might not do so, that results in deterioration of health. That 

is, the patients may move from a lower stage to higher stages of the disease, a significant 

proportion of patients move to end-stage, i.e. death stage too. So, backward 

progression/transition is also a possibility. Consequently we used reversible transition model 

that is depicted in Figure 1. Except for stage 5, which is absorbing stage all other stages are 

transient in nature. 
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With the passage of time, a patient may move in possible state space S={1,2,3,4,5}. Let X(t) = 

r be the current state of the patient, then the transition intensity rs  of advancing to state s in 

infinitesimal time t   is given by 

0

( ( ) | ( ) )
limrs

t

P X t t s X t r

t






  
 . 

Then the transition intensity matrix Q can be written as ,[ ]rs r s SQ     and possess the 

following  two properties (a) 0rs
s S




  for all  r    and  (b) rs rs
r s

 


  . 

The maximum likelihood estimation technique developed by Kalbfleish and Lawless (1986) 

can be used to estimate the transition intensities rs . Estimated transition intensities in turn can 

be used to find the transition probability matrix ,( ) [ ( )]rs r s SP t P t   and ( )rsP t  is defined as: 

( ) ( ( ) / ( ) )rsP t P X t v s X t r     

Also, Cox and Miller (1965) defined transition probability matrix with the help of the intensity 

matrix as a Kolmogorov equation ( ) tQP t e . Similarly, mean sojourn time, that is the time of 

stay in any transient state, is given by - 1
rr

. Let us denote covariates vector as Z, then the 

effect of covariates on transition intensity can be modeled by ( )ijq t , and defined in terms of 

Cox- proportional hazard regression as suggested by Marshall and Jones (1995):   

( ) (0)
T

ij Z

ij ijq t q e


  

Here (0)ijq , is the baseline intensity, ij  is the coefficient of regression. Here it is assumed that 

covariates are time independent. Estimates can be obtained using the maximum likelihood 

procedure suggested by Kalbfleish and Lawless (1986). 
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A hidden Markov model is generally used for defining a probability distribution over a 

sequence of observations. For brief elucidation, consider the observation at time t by the 

variable itX . It is presumed that t is an integer-valued index. Additionally, it is based on two 

assumptions: (i) the observations at time t is fostered by some process that is hidden from the 

observer and generated by misclassification matrix, (ii) it is also assumed that hidden state 

follows the Markov property with transition matrix Q, put in another way current state 

envelopes all information that is required to know about the historicity of the process to predict 

the subsequent future of the process, Ghahramani (2001), this intricate relationship for HMM 

is given in Figure 2. Generalized regressions can be used to model the covariates effect on 

transition intensity and misclassification probabilities.  

For mathematical formulation of the HMM, let  1[ ,..., ]
iiT i iTX X X denotes the observed state 

that triggered by the hidden state itS . The observed states itX  are assumed to be conditionally 

independent of true hidden states. The likelihood contribution for patient i is given by 

                                     1( ,..., )
ii i iTL f X X  

1 1, 1,( ,..., | ...... ) ( ...... )
i i i

i

i iT i iT i iT
S

f X X S S f S S  

Given the values of the underlying Hidden state, observed states are conditionally independent, 

using, Markovian property of Hidden states 

, 1 1 , 1( / ,...., ) ( / )ij i j i ij i jP S S S P S S    

The resulting  likelihood can be rewritten as, 

)

1 2

1 1( | ) ( ) ( | )
Ti i

i i i i

i i i

T

it it i it it
S t t t t

f X S f X f X S 
 

  
  

  
 
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In HMM, for the observable state 
it

X   are conditionally emitted by hidden states 
it

S   through 

misclassification matrix ,[ ]rs r s SM e   , whose elements are defined by 

{ / }
i irs t te P X s S r   , ,r s S   

An assumption about disease stages is that a stage can be misclassified only to the adjacent 

disease stage. By employing the Viterbi algorithm technique, we can recreate the optimal 

sequence in HMM using dynamic programming algorithm. It was disseminated by Viterbi 

(1967), but more elaborate elucidation was given by Bellman (1957). 

 

3. Results and Discussions 

The progression of disease stages in HIV/AIDS patients are given in Table 1. Diagonal entries 

in the table is the number of times a patient remains in the same stage. The number 19 signify 

that number of occasions where patient of stage 1 moves to stage 2. Likewise, there are 5,12, 

22 and 35 number of cases of reaching end stage 5 from stage1, stage 2, stage 3 and stage 4 

respectively.  

 Table 1: Number of state transitions 

  Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Stage 1 130 19 7 1 5 

Stage 2 131 128 65 7 12 

Stage 3 75 251 314 64 22 

Stage 4 28 133 484 363 35 
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The estimated parameters of cure rate model have been presented in Table 2. Here stages are 

observed after one year of initiation of ARV drug. Following table shows that patients who are 

in stage 1 have 86% chance of being long-term survivors, and chances are shrinking with 

severity of the disease. Patients who are in stage 4 even after one year of treatment have 

comparatively less chance (only 58%) of being long-term survivors.   

 

Table 2: Estimated cure rate model parameters 

  Mean S.D. MC- error 

Stage 1 

� 0.862 0.0587 0.05011 

α 4.85E-03 0.003741 6.57E-04 

β 0.06538 0.0995 0.00113 

γ 1.547 0.1095 0.0221 

Stage 2 

� 0.724 0.0418 0.00735 

α 5.74E-03 0.00411 2.51E-04 

β 0.00856 0.0997 0.001306 

γ 1.632 0.1014 0.0113 

Stage 3 

� 0.657 0.0156 0.00815 

α 6.85E-03 0.00412 5.27E-04 

β 0.006449 0.01317 0.001614 

γ 1.0546 0.2514 0.01822 

Stage 4 

� 0.587 0.0248 0.00139 

α 7.54E-03 0.00417 4.28E-04 

β 0.009324 0.0243 0.000908 

γ 0.693 0.168 0.099 

Table 3: Estimated transition intensities with 95% confidence interval 

From To Intensity C.I. 

Stage 1 Stage 1 -0.5306 (-0.759,-0.371) 

Stage 1 Stage 2 0.303 ( 0.249, 0.730) 

Stage 1 Stage 3 0.14 ( 0.023, 0.3621) 

Stage 1 Stage 4 0.09 ( 0.01, 0.1625) 

Stage 1 Stage 5 1.32E-06 ( 0, 8.035e+39) 

Stage 2 Stage 1 0.983 ( 0.734, 1.158) 

Stage 2 Stage 2 -1.94 (-2.240,-1.371) 

Stage 2 Stage 3 0.553 ( 0.335, 1.210) 

Stage 2 Stage 4 0.405 ( 0.272, 1.116) 

Stage 2 Stage 5 1.98E-05 ( 0, 2.920e+16) 

Stage 3 Stage 1 0.33 ( 0.234, 0.621) 

Stage 3 Stage 2 0.841 ( .603, 1.331) 

Stage 3 Stage 3 -1.64 (-1.837,-1.456) 
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Stage 3 Stage 4 0.462 ( 0.3604, 0.6001) 

Stage 3 Stage 5 8.68E-03 ( 0.00067,0. 1115) 

Stage 4 Stage 1 0.27 ( 0.13502, 0.3402) 

Stage 4 Stage 2 0.7504 ( 0.613, 1.712) 

Stage 4 Stage 3 0.716 ( 0.571, 1.966) 

Stage 4 Stage 4 -1.76 (-1.966,-1.571) 

Stage 4 Stage 5 2.63E-02 ( 0.0059, 0.118) 

 

Table 3 presents the intensity of disease progression in the absence of prognostic factors. 

Patients of stage 3 are 1.82 times (0.841/0.462) more likely to move to less severe disease stage 

1 than moving to severe stage 4. Similarly, the patients of stage 4 are 27.2 times (0.716/0.0263) 

more likely to move to stage 3 than moving to death stage 5. 

 

Table 4: Mean Sojourn Times at Different Stages 

 Estimates (Std. error) 95 % C.I. 

Stage 1 1.884 (0.343) (1.318,2.694) 

Stage 2 0.517 (0.038) (0.446,0.598) 

Stage 3 0.812 (0.036) (0.544,0.987) 

Stage 4 0.769 (0.032) (0.508,0.963) 

 

From Table 4 it can be observed that on an average a patient elapsed 1.88 years in stage 1, and 

0.517 years, 0.812 years, 0.769 years in stage 2, stage 3 and stage 4 respectively.  

 

 

Table 5: Estimated transition intensities and misclassification probabilities for 

misclassification model  

From To Intensity Probability 

Stage 1 Stage 1 -0.517 
      11e   

0.894 

Stage 1 Stage 2 0.233        12e  
0.106 

Stage 1 Stage 3 0.15   

Stage 1 Stage 4 0.09   

Stage 1 Stage 5 0.046   

Stage 2 Stage 1 0.933 21e   0.106 
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Stage 2 Stage 2 -1.845 22e   0.834 

Stage 2 Stage 3 0.514 23e   
0.06 

Stage 2 Stage 4 0.382   

Stage 2 Stage 5 8.28E-03   

Stage 3 Stage 1 0.232   

Stage 3 Stage 2 0.625 32e   0.152 

Stage 3 Stage 3 -1.223 33e   
0.743 

Stage 3 Stage 4 0.366 34e   0.105 

Stage 3 Stage 5 1.98E-05   

Stage 4 Stage 1 0.24   

Stage 4 Stage 2 0.783   

Stage 4 Stage 3 0.267 43e   0.063 

Stage 4 Stage 4 -1.29 44e   0.937 

Stage 4 Stage 5 1.27E-06   

 

Table 6: Mean sojourn times for misclassification model 

 
Estimates (Std. 

error) 95 % C.I. 

Stage 1 1.934 (0.215) (1.734,2.159) 

Stage 2 0.542 (0.093) (0.345.747) 

Stage 3 0.817 (0.082) (0.651,0.892) 

Stage 4 0.775 (0.136) (0.650,0.893) 

 

Table 5 presents the estimated transition intensities for misclassification model along with 

misclassification probabilities. Therein ���, � denotes true stage and � denotes observed  stage. 

So, ���  signify that for true stage 1 misclassifying it to stage 2 has probability 0.106, in other 

words there is 10% chance that patient of stage 1 will be mistakenly treated as stage2, similarly 

there, is 0.06 probability of treating stage 2 patients as stage 3. Mean sojourn time for 

misclassification model is given in Table 6. Even though prognostic factors effect have not 

been presented for simple Markov model, it is used for Hidden Markov model in Table 7. With 

sex (female) as reference, overestimation (���, ���, ���) of  misclassification probability has 

odds ratio 1.46, 1.81 and 2.08 over male patients. Odds ratio for misclassification probability 
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for age (>35) is 2.412, 1.477, 0.906 for overestimation (���, ���, ���) with respect to age 

(<=35). 

Table 7: Odds ratios for misclassification probabilities for prognostic factors 

 Misclassification 

 ��� ��� ��� ��� ��� ��� 

Sex 1.466 0.651 1.814 0.578 2.08 0.722 

Age 2.412 0.855 1.477 0.881 0.906 0.763 

Smoking 1.524 0.743 1.745 0.578 1.79 0.62 

Alcohol 2.438 0.835 2.216 0.771 1.823 0.697 

CD4 
count 

1.245 0.529 1.329 0.742 1.074 0.092 

Treatment 1.586 0.784 1.157 0.635 5.428 0.083 

 

To decrypt the states that could have most pertinently generated the sequence of stages 

observed, we employ a Viterbi algorithm Table 8. We have randomly taken two patients data 

to visualize the mismatch between true and observed stage of the patient. We found that for 

one patient, two times stage have been underestimated, and for another patient, two times stage 

have been overestimated.  

Table 8: Viterbi sequence 

Patient Time Observed Actual 

870 0 4 4 

870 1.542466 3 3 

870 2.169863 1 2 

870 3.027397 1 3 

391 0 4 4 

391 0.753425 4 4 

391 1.334247 4 4 

391 1.632877 4 4 

391 1.778082 4 3 

391 2.265753 4 3 

391 2.671233 5 5 

 

4. Conclusion 

The study shows that current ART treatment is successful and effective in making HIV/AIDS 

patients long-term survivors. Although, sticking to the treatment (adherence) is highly 

suggested but that isn’t easy to comply. Sometimes antiretroviral drugs could cause such side 
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effects that is severe enough to make patient stop taking them. Unfortunately, if a patient skips 

drugs the virus may start multiplying itself. This results in HIV to get resistant to drugs, the 

scenario relatively more prevalent in developing countries including India. That may be the 

reason of partially high morbidity and mortality due to HIV in India. This also showed by our 

cure rate model where stage 4 patients have less long-term survivors than the lower stages. We 

have demonstrated the alluring algorithm of pattern recognition, HMM in modeling the 

survival time data. This paper ventured to decipher the hidden Markov model in HIV/AIDS 

setup, where simple Markov model is effectively and predominantly being used to study 

disease progression. We obtained transition intensity for misclassification model and also the 

misclassification probabilities. Despite the fact that prognostic factor’s effects were not 

considered in simple Markov model it is contemplated whilst studying hidden Markov model. 

Notwithstanding the evidence that sex of the patient have no significant effect on the disease 

progression Jackson (2011), when it comes to misclassification of stages it do have effect on 

odds of misclassification probability. It can be observed that males have more odds of 

misclassification probability than the females (reference group) patients. In other words males 

are more vulnerable to exaggeration of stages of disease than the females, it may be distantly 

attributable to the prejudices towards males with respect to debauchery in general and 

promiscuity in particular. This finding may be re-verified through large scale meta- analysis of 

HIV/AIDS data. 

Patients with age more than 35 years at enrolment may be subject to overestimation of stages, 

which is partially understandable as older age is closely related with rapid progression of 

disease, Ghate et al. (2011), Touloumi et al. (1998). Thus our study solidify the point that 

person with relatively higher age with even higher CD4+ count should initiate ART. Likewise, 

smoking and alcohol consumption is associated with overestimation of stages of the disease. 
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Most significant and compelling finding is related with CD4+ count, whenever CD+ count is 

below 200 cells/µL, then odds of misclassification (overestimation) probability have increased. 

We have to further study the subjectivity involved in this result. As we have filtered the data 

set, therefore out of 1063 patients, majority of patients (694) are those on whom virocomb-N 

treatment combination were administered and remaining were given Tenolam+ Efravinez-600 

etc.,. Hence we classify the treatment protocol as “virocomb-N” (reference group) and 

“Tenolam+ Efravinez-600” as target group. With virocomb-N in reference, the others treatment 

have more odds of misclassification (overestimation), i.e. if treatment combination 

administered is “others” then there is more chance that they will be misclassified to higher 

stages of the disease. At last, we have randomly taken any two patients data to see the most 

probable sequence of disease progression stages that may have given rise to the stages that we 

perceive as observed stage. By employing the Viterbi algorithm, at one go we can get rid of 

glut of errors committed during staging of the disease.   
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