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Abstract 

Because activities occurring at the atomic 
and cellular levels occur on very different 
spatial and temporal scales, it is difficult to 
incorporate atomistic and molecule 
information into models of cellular 
behavior. Molecular dynamics (MD) and 
coarse-grained models in various cell 
regions are used in multiscale or multi- 
resolution approaches to overcome this 
challenge. The precision and 
characteristics of the coarse-grained 
model, which approximates the 
comprehensive MD description, determine 
their usefulness. Written as relatively low- 
dimensional systems of nonlinear 
stochastic differential equations, a family 
of stochastic coarse-grained (SCG) models 
is introduced. The non-Gaussian force 
distribution seen in MD simulations that 
linear models are unable to capture is 
incorporated into the nonlinear SCG 
model. Detailed MD simulations 
demonstrate that the nonlinearities can be 
selected so as not to complicate the 
parametrization of the SCG description. 
Gamma functions are used to find the 
solution to the SCG model. 

Keywords :multiscale modelling · coarse- 
graining · molecular dynamics · Brownian 
dynamics 

1 Introduction 

The need to include microscopic data 
(from X-ray crystallography, NMR 
spectroscopy, or cryo-electron microscopy) 

into dynamical models of intracellular 
processes has grown as experimental 
knowledge of the atomic or near-atomic 
structure of biomolecules and intracellular 
components has increased. Molecular 
dynamics (MD) simulations based on 
classical molecular mechanics are a 
popular method. The positions and 
velocities of individual atoms in these MD 
models are expressed as rather large 
systems of ordinary or stochastic 
differential equations, which may also be 
subject to algebraic constraints 
(Leimkuhler and Matthews, 2015; Lewars, 
2016). While there have been reports in the 
literature of all-atom MD simulations of 
systems with a million atoms (Tarasova et 
al., 2017; Farafanov and Nerukh, 2019), 
these simulations are limited to 
comparatively narrow computational 
domains, up to tens of nanometers in 
length. Modern computers cannot replicate 
intracellular activities, such as the 
movement of molecules over micrometers, 
as doing so would necessitate simulating 
trillions of atoms (Erban and Chapman, 
2019). 

Although BD models or their multi- 
resolution extensions simulate individual 
molecules of chemical species involved, 
the binding of Ca2+ ions to channel sites 
or other interactions between molecules 
are only described using relatively coarse 
probabilistic approaches. For example, the 
BD model of Dobramysl et al. (2016) 
describes interactions in terms of reaction 
radii  and  binding  probabilities  as 



 

 

implemented by Erban and Chapman 
(2009) and Lipkov´a et al. (2011). Atomic- 
level information is not included in BD 
models. In order to use this information, 
multi-resolution methodologies have to 
consider MD simulations in parts of the 
simulation domain. In the case of ions, 
such a multi-resolution scheme has been 
developed by Erban (2016), where an all- 
atom MD model of ions in water is 
coupled with a stochastic coarsegrained 
(SCG) description of ions in the rest of the 
computational domain. The accuracy and 
efficiency of such multi-resolution 
methodologies depend on the quality of 
the SCG description of the underlying MD 
model. In this paper, we present and 
analyze a class of SCG models which can 
be used to fit non-Gaussian distributions 
estimated from all-atom MD simulations. 
While the velocity distribution of the 
coarse-grained particle can be well 
approximated by a Gaussian (normal) 
distribution in our MD simulations, this is 
not the case of the force distribution. Non- 
Gaussian force distributions have also 
been reported by Shin et al. (2010) and 
Carof et al. (2014) in their MD simulations 
of particles in Lennard-Jones fluids. Thus 
our SCG model is formulated in a way 
which incorporates a Gaussian distribution 
for the velocity and a non-Gaussian 
distribution for the force (acceleration). 

Given an integer N ≥ 1, a coarse-grained 
particle (for example, an ion) will be 
described by (2N + 2) three-dimensional 
variables: its position X, velocity V and 
2N auxiliary variables Uj and Zj , where j 
= 1, 2, . . . , N. Denoting X ≡ (X1, X2, 
X3), V ≡ (V1, V2, V3), Uj ≡ (Uj,1, Uj,2, 
Uj,3) and Zj ≡ (Zj,1, Zj,2, Zj,3), the time 

evolution of the SCG model is given by 
 

 

 

 

 

where gj : R → R is an increasing 
differentiable function, g ′ j is its 
derivative, g −1 j is its inverse, hj : R → R 
is a continuous function and ηj,k are 
positive constants for j = 1, 2, . . . , N and k 
= 1, 2, 3, 4. We note that some of our 
assumptions on gj can be relaxed as long 
as g ′ j (g −1 j (Uj,i)) appearing in equation 
(4) can be suitably defined. 

The SCG description (2)–(5) includes 2N 
functions gj and hj and 4N additional 
parameters ηj,k, which can be all adjusted 
to fit properties of the detailed all-atom 
MD model. In particular the SCG model 
(2)–(5) can better match the MD 
trajectories of ions than the BD description 
given by equation (1), which only has one 
parameter, diffusion constant D, to fit to 
the MD results. 

One of the shortcomings of equation (1) is 
that its derivation from the underlying MD 
model requires us to consider the limit of 
sufficiently large times. In particular, we 
need to discretize equation (1) with a 
relatively large. 

time step, say a nanosecond, to use it as a 
description of the trajectory of an ion. 
Since the typical time step of an all-atom 
MD model is a femtosecond, it is difficult 
to design a multi-resolution scheme which 
would replace all-atom MD simulations by 
equation (1) in parts of the computational 
domain. The SCG model (2)–(5) can be 
used to fit not only the diffusion constant 
D but other important properties of all- 
atom MD models, which improves the 
accuracy of the SCG model at time steps 
comparable with the MD timestep. 

SCG models can be constructed using a 
relatively automated procedure by 
postulating  that  an  ion  interacts  with 



 

 

additional ‘fictitious particles’. Such a 
methodology has been applied to coarse- 
grained modelling of biomolecules by 
Davtyan et al. (2015, 2016) to improve the 
fit between an MD model and the 
dynamics on a coarse-grained potential 
surface. They use fictitious particles with 
harmonic interactions with coarse-grained 
degrees of freedom (i.e. they add quadratic 
terms to the potential function of the 
system and linear terms to equations of 
motions) and each fictitious particle is also 
subject to a friction force and noise. An 
application of such an approach to ions 
leads to systems of linear stochastic 
differential equations (SDEs) and can be 
used, after some transformation, to obtain 
a simplified version of the SCG model 
(2)–(5), where functions gj and hj are 
given as identities, i.e. gj (y) = hj (y) = y 

for y ∈ R and j = 1, 2, . . . , N. Using this 
simplifying assumption in the SCG model 
(2)–(5), we obtain 
 

 

This is a linear system of SDEs with 4N 

parameters. It has been shown by Erban 
(2016) that such models can fit an 
increasing number of properties of all- 
atom MD simulations as we increase N. 
For example, the linear SCG model (6)–(9) 
can be used to fit the diffusion constant D 
and second moments of the velocity and 
the force for N = 1, while the velocity 
autocorrelation function can better be 
fitted for larger values of N, e.g. for N = 3. 
However, there are other properties of MD 
simulations which cannot be captured by 
linear models even if consider arbitrarily 
large N. They include, for example, all 
distributions which are not Gaussian. This 
motivates  the  introduction  of  general 

functions hj and gj in the SCG model (2)– 
(5). 

Considering the SCG model (2)–(5) in its 
full generality, it can capture more 
interesting dynamics. However, coarse- 
grained models can only be useful if they 
can be easily parametrized. Thus in our 
analysis, we focus on choices of functions 
gj and hj which both improve the 
properties of the SCG description and do 
not complicate its analysis and 
parametrization. The rest of the paper is 
organized as follows. In Section 2, we 
consider the linear SCG model (6)– (9) for 
N = 1, which is followed in Section 3 with 
the analysis of the linear model for general 
values of N. To get some further insights 
into the properties of this model, we study 
its connections with the corresponding 
generalized Langevin equation. In Section 
4, we consider the nonlinear SCG model 
(2)– (5) for N = 1. We consider specific 
choices of nonlinearity g1, for which the 
model can be solved in terms of 
incomplete gamma functions. This helps 
us to design three approaches to 
parametrize the nonlinear SCG model, 
which are applied to data obtained from 
MD simulations. We conclude with the 
analysis of the nonlinear SCG model (2)– 
(5) for general values of N in Section 5. 

2 Linear model for N = 1 and the 
generalized Langevin equation 

We begin by considering the linear SCG 
model (6)–(9) for N = 1. To simplify our 
notation in this section, we will drop some 
subscripts and denote X = Xi , V = Vi , U 
= U1,i, Z = Z1,i, W = W1,i and ηk = η1,k 
for k = 1, 2, 3, 4. Then equations (6)–(9) 
read as follows 
 



 

 

where X is (one coordinate of) the position 
of the coarse-grained particle (ion), V is its 
velocity, U is its acceleration, Z is an 
auxiliary variable, dW is white noise and 
ηj , j = 1, 2, 3, 4, are positive parameters. 
In order to find the values of four 
parameters ηj suitable for modelling ions, 
Erban (2016) estimates the diffusion 
constants D and three second moments hV 
2 i, hU 2 i and hZ 2 i from allatom MD 
simulations of ions (K+, Na+, Ca2+ and 
Cl−) in aqueous solutions. The four 
parameters of the SCG model (10)–(13) 
can then be chosen as 
 

Then the SCG model (10)–(13) gives the 
same values of D, hV 2 i, hU 2 i and hZ 2 i 
as obtained in all-atom MD simulations. 

Since the model (10)–(13) only has four 
parameters, we can only hope to get the 
exact match of four quantities estimated 
from all-atom MD. To get some insights 
into what we are missing, we will derive 
the corresponding generalized Langevin 
equation and study its consequences. The 
generalized Langevin equation can be 
written in the form 
 

where K : [0,∞) → R is a memory kernel 
and random term R(t) satisfies the 
generalized fluctuation-dissipation 
theorem, given below in equation (21). To 
derive the generalized Langevin equation 
(15), consider the two-variable subsystem 
(12)–(13) of the SCG model. Denoting y = 
(U, Z) T, where T stands for transpose, 
equations (12)–(13) can be written in 
vector notation as follows 

 

where matrix B ∈ R 2×2 and vectors bj∈ R 
2 , j = 1, 2, are given as 

 

 

 
Let us denote the eigenvalues and 
eigenvectors of B as λj and νj = (1, λj ) T, j 
= 1, 2, respectively. The eigenvalues of B 
are the solutions of the characteristic 
polynomial λ 2 + η2 λ + η3 = 0. They are 
given by 
 

Since η2 and η3 are positive parameters, 
we conclude that real parts of both 
eigenvalues are negative. In what follows, 
we will assume η 2 2 6= 4η3. Then we 
have two distinct eigenvalues and the 
general solution of the SDE system (16) 
can be written as follows 
 

where c ∈ R 2 is a constant vector 
determined by initial conditions and matrix 

Φ(t) ∈ R 2×2 is given as 
 

i.e. each column is a solution of the ODE 
system dy = B y dt. Calculating the inverse 
of Φ(t) and considering long-time 
behaviour, equation (18) simplifies to 
 

where memory kernel K(τ ) is given by 
 

and noise term R(t) is Gaussian with zero 
mean and the equilibrium correlation 
function satisfying the generalized 
fluctuation-dissipation theorem in the form 
 

Using (17), memory kernel (20) can be 
rewritten as 



 

 

 

 
 

Fig. 1 (a) Memory kernel K(τ) given by 
equation (22) for η1 = 1, η2 = 4 and three 
different values of η3, namely η3 = 3 
(solid line, µ = 1), η3 = 5 (dashed line, µ = 
i) and η3 = 20 (dot-dashed line, µ = 4i). (b) 
Normalized velocity autocorrelation 
function χ(τ)/χ(0) computed by using 
equation (25) for the same parameter 
values as in panel (a). 

where µ = p η 2 2 /4 − η3. We note that the 
auxiliary coefficient µ is a square root of a 
real negative number for η 2 2 < 4η3. 
However, formula (22) is still valid in this 
case: for η 2 2 < 4η3 it can be rewritten in 
terms of sine and cosine functions, taking 
into account that µ = i |µ| is pure 
imaginary, sinh(i |µ| τ ) = i sin(|µ|) τ and 
cosh(i |µ| τ ) = cos(|µ| τ ). The memory 
kernel K(τ ), given by equation (22), is 
plotted in Figure 1(a) for different values 
of parameter µ. For simplicity, we use non- 
dimensionalized versions of our equations 
with dimensionless parameters η1 = 1 and 
η2 = 4. We choose three different values of 
η3 so that the values of µ are 1, i and 4i. In 
Figure 1(b), we plot the equilibrium 
velocity autocorrelation function which is 
defined as 

 

for τ ∈ [0,∞). More precisely, we plot χ(τ 
)/χ(0) which is normalized so that its value 
at τ = 0 is equal to 1. It is related to the 
memory kernel by 
 

where L K (s) = R ∞ 0 K(τ ) exp(−sτ ) dτ is 
the Laplace transform of the memory 
kernel K(τ ) and L −1 denotes Laplace 
inversion. Following Erban and Chapman 
(2019), we evaluate the right hand side of 
equation (23) as follows. Substituting 
equation (22) into (23), we obtain 
 

The polynomial in the denominator, p(s) = 
s 3 + η2s 2 + (η1 + η3)s + η1η2, has 
positive coefficients. Since p(−η2) < 0 < 
p(0), it has one negative real root in 
interval (−η2, 0), which we denote by a1. 
The other two roots (a2 and a3 say) may 
be real or complex, but if they are complex 
they will be complex conjugates since p(s) 
has real coefficients. Assuming that the 
real part of each root is negative, we first 
find the partial fraction decomposition of 
the rational function in (24) as 
 

where ci ∈ C are constants (which depend 
on η1, η2 and η3). Then we can rewrite 
(23) as 
 

The results computed by (25) are shown in 
Figure 1(b). We note that although 
equation (25) may include complex 
exponentials, the resulting χ(τ ) is always 
real. Since the diffusion constant, D, and 
the second moment of the equilibrium 
velocity distribution, hV 2 i, are related to 
χ by 
 

 
the parametrization (14) guarantees that 
both the value of χ(0) and the integral of 
χ(τ ) are captured accurately. However, the 
simplified SCG description (10)–(13) is 
not suitable to perfectly fit the velocity 



 

 

autocorrelation function or the memory 

kernel for all values of τ ∈ [0,∞). In order 
to do this, we have to consider the SCG 
model (6)–(9) for larger values of N as it is 
done in the following section. 

3 General linear SCG model and 
autocorrelation functions 

Considering the linear SCG model (6)–(9) 
for general values of N, we can solve 
equations (8)–(9) for each value of j = 1, 2, 
. . . , N to generalize our previous result 
(19) as 
 

 
where kernel Kj (τ ) is given by (compare 
with (22)) 
 

With 

 

 

 
and noise term Rj,i(t) is Gaussian with 
zero mean and the equilibrium correlation 
function satisfying 
 

Substituting (26) to (7), we obtain the 
generalized Langevin equation 
 

Where 
 

In particular, we have 3N parameters to fit 
memory kernel K(τ ), which can be 
estimated from all-atom MD simulations. 
There have been a number of approaches 
developed in the literature to estimate the 

memory kernel from MD simulations. 
Shin et al. (2010) use an integral equation 
with relates memory kernel K(τ ) with the 
autocorrelation function for the force and 
the correlation function between the force 
and the velocity. Estimating these 
correlation functions from long time MD 
simulations and solving the integral 
equation, they obtain memory kernel K(τ ). 
Other methods to estimate the memory 
kernel, K(τ ), of the corresponding 
generalized Langevin equation (29) have 
been presented by Gottwald et al. (2015) 
and Jung et al. (2017). An alternative 
approach to parametrize the linear SCG 
model (6)–(9) is to estimate the velocity 
autocorrelation function, χ(τ ), from all- 
atom MD simulations. This can be done by 
computing how correlated is the current 
velocity (at time t) with velocity at 
previous times. Since equations (10)–(13) 
are linear SDEs, we can follow Mao 
(2007) to solve them analytically, using 
eigenvalues and eigenvectors of matrices 
appearing in their corresponding matrix 
formulation. Using this analytic solution, 
Erban (2016) use an acceptance-rejection 
algorithm to fit the parameters of linear 
SCG model (6)–(9) for N = 3 to match the 
velocity autocorrelation functions of ions 
estimated from all-atom MD simulations 
of Na+ and K+ in the SPC/E water. Since 
the parameter µj given by (28) is a square 
root of a real number, it can be both 
positive or purely imaginary. In particular, 
kernels Kj (τ ) given by equation (27) can 
include both exponential, sine and cosine 
functions as illustrated in Figure 1(a). 
Since memory kernel K(τ ) is given as the 
sum of Kj (τ ) in equation (30), typical 
memory kernels and correlation functions 
estimated from all-atom MD simulations 
can be successfully matched by linear SCG 
models for relatively small values of N. 
However, as shown by Mao (2007), 
analytic solutions of linear SDEs also 



 

 

imply that the process is Gaussian at any 
time t > 0, provided that we start with 
deterministic initial conditions. Thus the 
linear SCG model (6)–(9) for abtitrary 
values of N can only fit distributions 
which are Gaussian. This motivates our 
investigation of the nonlinear SCG model 
in the next two sections. 

4 Nonlinear SCG model for N = 1 

We begin by considering the nonlinear 
SCG model (2)–(5) for N = 1. As in 
Section 2, we simplify our notation by 
dropping some subscripts and denoting X 
= Xi , V = Vi , U = U1,i, Z = Z1,i, W = 
W1,i, g = gj , h = hj and ηk = η1,k for k = 
1, 2, 3, 4. Then equations (2)–(5) read as 
follows 
 

where X denotes (one coordinate of) the 
position of the coarse-grained particle, V is 
its velocity, U is its acceleration, Z is an 
auxiliary variable, dW is white noise, ηj , 
for j = 1, 2, 3, 4, are positive parameters 
and functions g : R → R and h : R → R are 
yet to be specified. 

Equation (31) describes the time evolution 
of the position, while equations (32)–(34) 
admit a stationary distribution. We denote 
it by p(v, u, z). Then p(v, u, z) dv du dz 

gives the probability that V (t) ∈ [v, v+dv), 

U(t) ∈ [u, u+du) and Z(t) ∈ [z, z + dz) at 
equilibrium. The stationary distribution, 
p(v, u, z), of SDEs (32)–(34) can be 
obtained by solving the corresponding 
stationary Fokker-Planck equation 
 

which give 

) where C is the normalization constant, 
and functions G and H are integrals of 
functions g and h, respectively, which are 
given 
 

) We note that for the special case where g 
and h are given as identities, i.e. g(y) = 

h(y) = y for y ∈ R, the nonlinear SCG 
model (31)–(34) is equal to the linear SCG 
model (10)–(13) and functions G and H 
are G(y) = H(y) = y 2/2. Then the 
stationary distribution (35) is product of 
Gaussian distributions in v, u and z 
variables. In particular, we can easily 
calculate the second moments of these 
distributions in terms of parameters ηj . 
Estimating these moments from all-atom 
MD simulations, we can parametrize the 
resulting linear SCG model (10)–(13) as 
shown in equation (14). However, if we 
want to match a non-Gaussian force 
distribution, we have to consider nonlinear 
models. A simple one-parameter example 
is studied in the next section. 

4.1 One-parameter nonlinear function 

Consider that g is a function depending on 
one additional positive parameter η5 as 
follows 
 

where we use sign to denote the sign 
(signum) function 
 

The function defined by (37) only satisfies 

our assumptions on g for η5 ∈ (0, 1] as it is 
not differentiable at y = 0 for η5 > 1, but 
we will proceed with our analysis for any 
positive η5 > 0. Consider that function h is 

an identity, i.e. h(y) = y for y ∈ R, then 
equations (31)–(34) reduce to 



 

 

 

 

where we would have to be careful, if we 
used this model to numerically simulate 
trajectories for η5 > 1, because of possible 
division by zero for U = 0 in equation (41). 

If η5 ∈ (0, 1], then we do not have such 
technical issues. Using equation (35), the 
stationary distribution is equal to 
 

where the normalization constant is given 
by 
 

 
Integrating (43), we get 
 

 
where Γ is the gamma function defined as 
 

Let α ≥ 0. Integrating (43), we get 
 

 

Fig. 2 (a) Kurtosis Kurt[U] given by 
equation (59) as a function of parameter η5 
for three different values of parameter η6. 
The result for η6 = 0 (blue solid line) 
corresponds to the case of one-parameter 
function g, defined by (37), where the 
kurtosis is given by (46). (b)Distribution of 
U estimated from a long-time MD 
simulation (blue circles) compared with 

the results obtained by the linear SCG 
model (10)–(13) (black dotted line), 
nonlinear SCG models (31)–(34) with one- 
parameter function g, defined by (37), 
fitting hU2 i and hU4 i (red dot-dashed 
line) and h|U|i and hU2 i (green dashed 
line), and the nonlinear SCG model (31)– 
(34) with two-parameter function g 
defined by (52), matching all three 
moments h|U|i, hU2 i and hU4 i (cyan 
solid line). 

Using (45) for α = 2 and α = 4, we obtain 
the following expression for kurtosis 
 

In particular, the kurtosis is only a function 
of one parameter, η5. It is plotted in Figure 
2(a) as the blue solid line, together with 
the kurtosis obtained for a more general 
two-parameter SCG model studied in 
Section 4.2. We observe that the 
distribution of U is leptokurtic for η5 < 1 
and platykurtic for η5 > 1. If η5 is equal to 
1, then our SCG model given by equations 
(31)–(34) reduces to the linear SCG model 
given by equations (10)–(13), i.e. the 
stationary distribution is Gaussian and its 
kurtosis is 3. This is shown by the dotted 
line in Figure 2(a). 

Since equation (46) only depends on 
parameter η5, we can use the kurtosis of 
the acceleration distribution (which is 
equal to the kurtosis of the force 
distribution) esimated from MD 
simulations to find the value of parameter 
η5. To calculate the kurtosis, we estimate 
the fourth moment hU 4 i in addition to the 
second moment, hU 2 i, used before in our 
estimating proceduce (14) for the linear 
model. In particular, we not only get 
equation (46) for calculating the value of 
parameter η5, but also a restriction on 
other parameters η2, η3 and η4. Using (45) 
for α = 2, it can be stated as follows 



 

 

 

 

where we have used properties of the 
gamma function, including Γ(1 + y) = y 
Γ(y) and Euler’s reflection formula, 
Γ(1−y)Γ(y) sin(πy) = π, to simplify the 
right hand side. We note that in the 
Gaussian case, η5 = 1, the right hand side 
of equation (47) further simplifies to 
 

which is indeed the formula for the second 
moment of U given by the linear SCG 
model (10)–(13). Equation (47) provides 
one restriction on four remaining 
parameters, η1, η2 η3 and η4, which need 
to be specified. This can be done by 
estimating three additional statistics from 
MD simulations, as in the case of the 
linear SCG model (10)–(13) in equation 
(14). Indeed, the stationary distributions of 
V and Z are Gaussian with mean zero. 
Their second moments and the diffusion 
constant, D, for the nonlinear SCG model 
(31)–(34) can be calculuted as 
 

Therefore, assuming that D, hV 2 i, hZ 2 i 
are obtained from MD simulations and η 2 
4/(2η2η3) is given by (47), we can 
calculate parameters ηk by 
 

We note that in the Gaussian case, η5 = 1, 
we can substitute equation (48) for η 2 
4/(2η2η3) and the parametrization 
approach (50)–(51) simplifies to equation 
(14) used in the case of the linear SCG 
model (10)–(13). In the next subsection, 
we generalize formula (37) to a two- 
parameter function and show that the 
parametrization approach (50)–(51) is still 

applicable to the case of more general 
SCG models. 

4.2 Two-parameter nonlinear function 

Consider that g is a function depending on 
two positive parameters η5 and η6 as 
follows 
 

where sign function is defined by (38). In 
particular, our expression for function g is 
equal to the formula (37) for sufficiently 
large values of |y|. As discussed in the 
previous section, if we used formula (37), 
there would be some issues for y close to 
zero (for example, the division by zero for 
U = 0 and η5 > 1 in equation (41)), so our 
generalized formula (52) replaces (37) 
with a linear function for smaller values of 
|y|. On the face of it, it looks that there 
could also be some issues with the 
generalized formula (52), because it is not 
strictly increasing for |y| ≤ η η5 6 (1 − η5). 
However, function (52) is increasing and 
invertible away of this region with its 
inverse given by 
 

Moreover, what we really need in 
equations (31)–(34) is g ′ (g −1 (u)) which 
can be defined as the following continuous 
function 
 

where the removable discontinuity at u = 0 
has disappeared because we have defined g 
′ (g −1 (0)) = η 1−η5 6 /η5. Integrating 
(52) and substituting (53), we get 
 



 

 

where G is the integral of function g 
defined by (36). Consider again that h is an 

identity, i.e. h(y) = y for y ∈ R. Then the 
stationary distribution (35) is again 
Gaussian in V and Z variables with their 
second moments given by equation (49). 
Let us denote the marginal stationary 
distribution of U by 

 

Using (35) and (54), we hav 
 

where Cu is the normalization constant 
given by 
 

 
Let us define 

 

 
 
Integrating (55), we get, for any α ≥ 0, 
 

 
where function F(κ1, κ2, α) is defined by 
 

and Γ (resp. γ) is the upper (resp. lower) 
incomplete gamma function defined by 
 

Substituting α = 2 and α = 4 in equation 
(57), we get 
 

This formula for the kurtosis is visualized 
in Figure 2(a) as a function of parameter 
η5 for three different values of parameter 
η6. We note that the case η6 = 0 
corresponds to the case studied in Section 
4.1. If η6 = 0, then equation (56) implies 
κ1 = 0. Since γ(s, 0) = 0 and Γ(s, 0) = Γ(s), 
where Γ(s) is the standard gamma function 
given by (44), we can confirm that 
equation (59) converges to our previous 
result (46) as η6 → 0. Substituting α = 1 
into (58), we obtain F(κ1, κ2, 1) = exp 
(κ1). Consequently, using α = 1 in 
equation (57), we obtain 

 

 
Using α = 2 in equation (57), we get 
 

Consequently, if we use MD simulations to 
estimate not only the second and fourth 
moments, hU 2 i and hU 4 i, but also the 
first absolute moment h|U|i, we can 
substitute the estimated MD values into 
equations (59) and (61) to obtain two 
equations for two unknowns κ1 and κ2. 
Solving these two equations numerically, 
we can get κ1 and κ2. Then we can use 
(56) and (60) to get the original parameters 
η5 and η6 by 
 

Moreover, equation (56) also implies the 
following restriction on other parameters 
η2, η3 and η4 
 

This restriction is equivalent to restriction 
(47). Therefore, assuming again that D, hV 
2 i, hZ 2 i are obtained from MD 
simulations and η 2 4/(2η2η3) is given by 
(63), we can calculate parameters η1, η2, 



 

 

η3 and η4 by equations (50)–(51). We note 
that the two additional parameters η5 and 
η6 can be used to satisfy both equations 
(59) and (61), while in Section 4.1 we 
could only use one equation (equation (46) 
for kurtosis) to fit one parameter η5. 
However, in the case of one-parameter 
function (37), we could (instead of fitting 
the kurtosis) match the quantity hU 2 
i/h|U|i2 with MD simulations, i.e. we could 
replace equation (46) by equation (61) 
simplified to the one-parameter case 
corresponding to function (37). Passing to 
the limit η6 → 0 in equation (61) and 
using Euler’s reflection formula, Γ(1 − 
y)Γ(y) sin(πy) = π, we obtain that the one- 
parameter nonlinearity (37) implies the 
following formula 
 

 
Thus, in Section 4.1, we could use h|U|i 
and hU 2 i estimated from long-time MD 
simulations to calculate the left hand side 
of equation (64), which could then be used 
to select parameter η5. Other parameters 
could again be chosen by equations (50)– 
(51). 

5 Nolinear SCG model for general 
values of N 

We have already observed in Sections 2 
and 3 that the linear SCG model (6)– (9) 
can match the MD values of a few 
moments for N = 1, while we need to 
consider larger values of N to match the 
entire velocity autocorrelation function. 
Considering the nonlinear SCG model (2)– 
(5), we have two options to capture more 
details of the non-Gaussian force 
distribution observed in MD simulations. 
We could either keep N = 1, as in Section 
4, and introduce additional parameters into 
nonlinearity g = g1, or we could consider 
larger values of N. In Section 4, we have 
shown that by going from one-parameter 

to two-parameter function g, we improve 
the match with MD results. In this section, 
we will discuss the second option: we will 
use larger values of N. Consider equations 
corresponding to the i-coordinate, i = 1, 2, 
3, of the nonlinear SCG model (2)–(5). Let 
us denote the stationary distribution of 
equations (3)–(5) by 
 

Then p(v, u, z) dv du1 du2 . . . duN dz1 
dz2 . . . dzN gives the probability that Vi(t) 

∈ [v, v + dv), Uj,i(t) ∈ [uj , uj + duj ) and 

Zj,i(t) ∈ [zj , zj + dzj ), for j = 1, 2, . . . , N, 
at equilibrium. The stationary distribution 
can be obtained by solving the 
corresponding stationary Fokker-Planck 
equation 
 

Our analysis in Section 4.1 shows that 
parameters ηj,2, ηj,3 and ηj,4 appear on 
the left hand side of equation (47) as a 
suitable fraction, which in the Gaussian 
case corresponds to the second moment of 
the acceleration (see equation (48)). 
Considering general N, we define this 
fraction as new parameters. 
 

and we again assume that the second 
moment of the velocity distribution, hV 2 i 
= hV 2 i i, can be estimated from long-time 
MD simulations. In order to find the 
stationary distribution, we will require that 
parameters ηj,1, ηj,2, ηj,3 and ηj,4 satisfy 
(compare with equation (49) for N =1) 
 

 
Then the stationary distribution, obtained 
by solving (65), is given by 



 

 

 

 

where C is the normalization constant and 
functions Gj and Hj are integrals of 
functions gj and hj , respectively, which 
are given by 
 

Following (37), we assume that hj (zj ) = 
zj and each gj is a function of one 
additional positive parameter ηj,5, j = 1, 2, 
. . . , N, given as 
 

 
Then we have, 
 

Then the stationary distribution (66) is 
Gaussian in Vi and Zj,i variables and we 
can integrate (66) to calculate the marginal 
distribution of Uj,i by 
 

Consequently, 
 

where the normalization constant Cj is 
given 

 

Integrating (68), we can calculate 
 

As 
 

The acceleration of the coarse-grained 
particle is given by 
 

 
Using the symmetry of (68), odd moments 
of Uj,i are equal to zero. In particular, 
hUj,ii = 0 and hU 3 j,ii = 0 for j = 1, 2, . . . 
, N. Consequently, 
 

 
which gives 
 

Substituting equation (69) for moments on 
the right hand side of equation (72), we 
can express the kurtosis of Ui in terms of 
2N parameters σj and ηj,5, where j = 1, 2, . 
. . , N. For example, if we choose the 
values of dimensionless parameters ηj,5 
equal to given numbers and define new 
parameters 

 

 
then equation (69) implies that hU 2 j,ii is 
a linear function of κj and hU 4 j,ii is a 
quadratic function of κj . Equations (70) 
and (71) can then be rewritten as the 
following system of two equations for κ1, 
κ2, . . . , κ 
 

where c1,j and c2,j are known constants, 
which will depend on our initial choice of 
values of ηj,5. Thus, using N > 2, we still 
have an opportunity to not only fit the 
second and fourth moments of the force 
distribution, but other moments as well. 
For example, the 6-th moment, hU 6 i i, 



 

 

would include the linear combination of 
the third powers of κj . We could also fit 
other properties of the force distribution 
estimated from MD simulations. For 
example, we could generalize one- 
parameter nonlinearities (67) to two- 
parameter nonlinear functions, as we did in 
equation (52). Then we could match the 
value of the distribution at u = 0, if our aim 
was to get a better fit of the MD 
acceleration distribution obtained in the 
illustrative example in Figure 2(b). 
Another possible generalization is to 
consider nonlinear functions hj , provided 
that we estimate more statistics on the 
auxiliary variable Z from MD simulations. 

conclusions 

Equations (2)–(5) provide a family of 
SCG models that we have presented and 
examined. These models can be 
parametrized to fit the properties of 
detailed all-atom MD models. Erban 
(2016) created a multiscale (multi- 
resolution) technique that uses the linear 
SCG model (6)–(9), which is a specific 
choice of functions gj and hj in equations 
(2)–(5), as a transitional description 
between all-atom MD simulations and BD 
models. In Sections 2 and 3, the linear 
SCG model is examined in further detail. 
We point out that, as N increases, the 4N 
parameters of this model can more 
accurately match some statistics 
determined from all-atom MD simulations, 
but that, for all values of N, there are still 
statistics that cannot be matched. Non- 
Gaussian force distributions are among 
them. 
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